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Abstract—Soft robotic arms have gained significant attention
owing to their flexibility and adaptability. Nonetheless, the
instability due to their high-elasticity structure further leads to
the difficulty of precise kinematic modeling and control. This
work introduces a novel solution employing foam-embedded
joint design (Fe-Joint), effectively mitigating oscillations and
enhancing motion stability. This innovation is integrated into the
new continuum soft robotic arm (Fe-Arm). Through iterative
design optimization, the Fe-Arm attains superior mechanical
performance and control capabilities, enabling a settling state
in 0.4 seconds post external force. Enabled by the quasi-static
behavior of Fe-Arm, we propose a long short-term memory
network (LSTM) based iterative self-improving learning strategy
(ISL) for end-to-end inverse kinematics modeling, tailored to Fe-
Arm’s mechanical traits, enhancing modeling performance with
limited data. Investigating key control parameters, we achieve
target trajectory modeling errors within 9% of the workspace
radius. The generalization potential of the ISL method is demon-
strated using the pentagonal trajectory and on a different Fe-Arm
configuration.

Index Terms—Soft robotic joint, oscillation reduction, self-
improving learning.

I. INTRODUCTION

SOFT robotic arms have emerged as a prominent research
area in the field of soft robotics, driven by their in-

herent characteristics of safety, lightweight construction, and
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compliance [1]. These attributes position them as promising
solutions for applications in diverse unstructured environ-
ments. Recent studies have reported diverse actuation de-
signs, including pneumatic systems, cable-driven mechanisms,
and electroactive polymers [2]. Continuum soft robotic arm
structures typically feature three soft actuators connected in
parallel, forming a triangular configuration in cross-section [3].
These innovative designs allow soft robotic arms to exhibit
distinctive morphologies that deviate from traditional rigid-
body counterparts, opening up possibilities for novel tasks and
enhanced functionalities [4].

Soft robotic arms employing these actuation methods and
structure designs have demonstrated promising motion per-
formance when coupled with carefully designed position or
dynamics controllers. However, they often face challenges
stemming from undesired oscillations in dynamic scenarios.
For instance, experimental results from the FESTO Bionic
Handling Assistant (BHA) indicate that when subjected to
external forces, the robotic arm undergoes under-damped os-
cillations lasting approximately three seconds before reaching
a stable state [5]. Similarly, the multi-segment manipulator
powered by fluidic elastomer actuators also experiences an
oscillation period of roughly 10 seconds [6]. This phenomenon
significantly limits the potential applications of soft robotic
arms. The drawbacks associated with undesired oscillation en-
compass various aspects, including (a) the inability to sustain
substantial external loads, (b) diminished image perception
when cameras are integrated as part of the end-effector,
and (c) the impracticality of implementing high-frequency
feedback dynamic controllers. This problem is not due to
immature fabrication or poor controller design, but a result
of the high inherent compliance of the actuator material. Soft
robotic arms, typically composed of stacked soft actuators or
joints, possess high elasticity, exacerbating the amplification
of oscillations within the system.

Research on the mechanical performance of soft robotic
arms mainly focuses on increasing stiffness and load capacity.
A vertebraic joint design [7] is proposed to enhance payload
and stiffness. [8] and [9] employ particle jamming and em-
bedded Shape Memory Alloy springs, respectively, to achieve
variable stiffness. However, the influences of the designs on
the oscillations issue have yet to be systematically investigated.

Foams have emerged as a novel material in soft robot
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Fig. 1. The concept of (a) the foam-embedded soft robotic joint for mitigating oscillations, and the resultant quasi-static behavior enables the control by
sequential inverse kinematics (IK) model, which can be obtained by LSTM-based methods. (b) Overview of the LSTM-based Iterative Self-Improving (ISL)
IK model. (c) The Fe-Joint design. (d) The Fe-Arm design. (e) The prototype of Fe-Arm. (f) Embedded foam design and geometrical parameters. Lgap is
the length of the gap between levels. Lic is the length of the initial compression. Li is the initial length of the foam.

fabrication, offering diverse benefits. Poroelastic foam has
been utilized for the simple fabrication of soft robots [10].
Additionally, polyethylene foam has enabled the construction
of human-scale soft robots [11]. Researchers have success-
fully employed polyurethane foam in the creation of soft
grippers and even soft robotic “puppies” [12]. In the con-
text of pneumatic actuators, polyurethane foam material has
been ingeniously incorporated into vacuum-powered designs
by brushing a silicone layer onto the surface of the foam
[13]. This modularized design enabled soft robots with ex-
panded capabilities and achieved a lightweight structure with
variable density and high deformation tolerance. Memory
foam, a specific type of polyurethane foam, possesses vis-
coelastic properties and low-resilience characteristics [14],
[15], making it highly suitable for structural support and
oscillations reduction of soft robotic arms. In the domain
of inverse kinematic modeling for soft robotic joints and
arms, due to fabrication errors and the complex dynamics
inherent in soft systems, traditional analytical models face
challenges in accurately mapping sensor readings to system
states [16]. For instance, the widely used Piecewise Constant-
curvature method encounters difficulties in this regard [17].
To address these challenges, recent studies have explored the
application of various machine learning techniques, with a
particular focus on deep learning methodologies [18]–[20].
Deep learning-based methods have been extensively studied
in the field of inverse kinematic modeling and control of soft
pneumatics bellows-based robot arms. Various models such as
fully connected networks (FCNs), recurrent neural networks
(RNNs), and Convolutional Neural Networks (CNNs) have
demonstrated high performance in static modeling of soft arms
[21].

However, two-fold major challenges are faced if using
existing methods directly. Firstly, previous work on inverse

kinematic (IK) modeling mostly does not involve additional
components with different material properties such as foam
[22], [23], which exerts a force of different directions at the
same endpoint position, determining if the foam is being
elongated or compressed, as shown in Fig. 1(a). Secondly,
when employing deep learning techniques for modeling soft
robotic arms, a substantial challenge revolves around acquiring
an adequate volume of high-quality labeled training data [20].

In this paper, we present solutions to address the oscillation
problem in soft robotic arms through the design of joints
and the challenges in modeling and control. Our proposed
approach involves a foam-embedded soft robotic joint, which
mitigates undesired oscillations. This joint design is seamlessly
integrated into a new continuum soft robotic arm, resulting in
improved mechanical motion performance while maintaining
inherent compliance and flexibility. To achieve cost-effective
control, we employ an LSTM-based iterative self-improving
learning method for modeling the arm. An origin is explicitly
defined as the start point of each model sequence, to enable
our RNN model to compress omnidirectional motion informa-
tion owning to the deformation of the embedded foam. We
demonstrate the effectiveness of this approach through real
motion control experiments. The contributions of this work
can be summarized as follows:

• Introduced a novel foam-embedded soft robotic joint
design (Fe-Joint) that effectively reduces undesired oscil-
lations in soft robotic motion, obtaining the quasi-static
behavior for inverse kinematic modeling.

• Integrated the Fe-Joint into the new continuum soft
robotic arm (Fe-Arm), and defined four key perfor-
mance metrics to optimize the design further. Realized
pneumatic-based active motion control of the Fe-Arm in
three degrees of freedom (DOFs).

• Proposed an iterative self-improving learning strategy
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TABLE I
GEOMETRICAL CONFIGURATIONS OF THE FE-ARM

Parameter Value(unit)
The initial height 240mm

The maximum extension length 255mm
The minimum contraction length 115mm

The maximum radius of cross-section 70mm
The horizontal distance between the two bellows’ axis 69.28mm

The maximum diameter of the bellows 37.56mm
The minimum diameter of the bellows 30.94mm

Fig. 2. Schematic diagram of passive evaluation experiment.

(ISL) with the LSTM architecture for end-to-end inverse
kinematic modeling of the Fe-Arm. Investigated the effect
of two control parameters (delay time and step size) on
the modeling approach. Achieved a modeling error of
less than 9% relative to the maximum horizontal radius
of motion, even with limited data availability and human
intervention. The generalization potential of the method
is demonstrated.

II. DESIGN AND OPTIMIZATION

A. Foam-embedded Design and Fabrication

As shown in Fig. 1(c), the Fe-Joint is developed by
combining distinct dynamic properties of foam and bellows.
The active actuation component leverages the high scalability
of pneumatic bellows. Blow-molded pneumatic bellows with
open ends are employed, concatenating together with 3D-
printed nylon planes. To ensure airtightness, we seal the
bellows using the hot-melt adhesive (HMA). The passive
energy absorption component capitalizes on the viscoelasticity
and low resilience of the foam. Each foam is cropped to fit
within the space between the bellows, serving as the core
element of absorbing elastic potential generated by the bellows
during motion.

As illustrated in Fig. 1(d)(e), the Fe-Arm is constructed
by connecting four Fe-Joints in series. To reduce the overall
system’s DOF and mitigate buckling, 3D-printed connectors
are used to link each joint and constraint. All bellows actuators
in one vertical line are connected internally and share the same
pneumatic pressure. This design enables the Fe-Arm to actuate
with three independent pressure inputs, resulting in three
actuated DOFs. To facilitate the insertion of foam into the Fe-
Arm, the foams are cut into specific shapes, as depicted in Fig.
1(d). In contrast to the integrated design driven by negative
pressure presented in [13], our design aims to separate the

foam from the actuators, with the foam embedded in parallel
to the actuators, and obtain extension and retraction when
subjected to positive and negative pressures, respectively. This
enables easy replacement of the foam, allowing for a variety
of foam configurations to be used with the same soft arm for
desired performance. Additionally, nylon belts are employed to
secure the assembled parallel structure at each joint, ensuring
the desired curvature shape during movements. Geometrical
configurations of the Fe-Arm are shown in TABLE I.

B. Performance Evaluation

To conduct a comparative analysis of different foam-
embedded designs and assess their performance, a passive
evaluation experiment is employed. As shown in Fig. 2,
the unloaded Fe-Arm is subjected to a passive evaluation
experiment setup. A thin inelastic soft cord is attached to
the end plate of the Fe-Arm and fixed to a point in space.
Upon releasing the cord, the Fe-Arm exhibits an immediate
tendency to restore its original vertical state. This behavior is
attributed to the internal actuation force resulting from the
pressure difference between the actuators’ cavities and the
reaction force arising from structural deformation. To capture
and analyze the Fe-Arm’s motion, an inertial measurement
unit (MPU-6050) is mounted on the end plate. This allows for
the recording of pitch angle and acceleration data during the
motion of the Fe-Arm.

To compare different foam-embedded designs in the passive
evaluation experiment, we propose four metrics to assess their
performance: (a) apeak: The peak acceleration experienced by
the end plate of the Fe-Arm. (b) Tstable: The relative stability
time is defined as the duration required for the Fe-Arm to reach
the quasi-static state. It is determined by identifying the time
instant when the third peak of the pitch angle is reached. (c)
Tsettling: The settling time is defined as the duration it takes
for the acceleration of the Fe-Arm to reduce to a range between
0.85g and 1.05g, which corresponds to a 5% error relative to
the steady-state acceleration. (d) ∆angle: This metric quantifies
the angular difference between the final state of the Fe-Arm
and its initial vertical state after stabilization.

C. Configuration Iteration

We conducted experiments to achieve the best foam-
embedded design, focusing on three key aspects. Firstly, we
compare two different materials, high-resilience foam and
memory foam, with no foam to evaluate the impact of foam
material on the arm’s performance. Next, we explored the
influence of foam density by testing three different density
levels. Lastly, we investigated the effect of two geometrical
parameters: the length of the gap between levels (Lgap) and the
length of the initial compression (Lic), as shown in Fig. 1(d).
Lgap brings more flexibility for the foam between levels of the
joints. With larger Lic, the actuators can extend easier with less
constraint from the foam due to the easy-to-compressed and
hard-to-elongated characteristics of the foam. For each of these
optimization aspects, we performed the passive evaluation
experiment and utilized the metrics mentioned to evaluate and
compare the performance of the optimized designs.
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Fig. 3. Passive evaluation experiment results. From left to right are, respectively, angular and acceleration graphs, physical photos of the design used, and
values of four metrics. apeak: peak dots in the acceleration graphs; Tstable: dashed lines in the angle graphs; Tsettling : dashed lines in the acceleration
graphs; ∆angle: values of the end of curves in the angle graphs. Distinct designs are represented by varying colors of curves and dashed edges. The chosen
designs are accentuated with thickened dashed edges. (a) Material comparison. (b) Density comparison. (c) Geometrical parameters comparison.

The passive evaluation experiment results are shown in Fig.
3. In the comparison experiment of different foam materials,
memory foam stands out by manifesting a significant reduction
in apeak of 3.4g and Tsettling of 0.4s, compared to the other
two designs. Although the Tstable of 0.8s is longer than that
of the high-resilience foam (0.66s), the latter exhibits more
oscillations in subsequent movements and a large ∆angle of
-9.9°. These observations underscore that memory foam is
a suitable choice for mitigating oscillations and improving
performance, a result attributed to its superior viscoelastic and
low-resilience characteristics.

To investigate the impact of foam density, we conducted
comparison tests using different densities of memory foam:
50D, 65D, and 90D. The results show that the 65D memory
foam exhibits similar performance to the 50D memory foam
in terms of Tstable of 0.81s and Tsettling of 0.4s. However,
it significantly outperforms the 50D memory foam in apeak
with a value of 3g. On the other hand, the 90D memory foam
demonstrates a large ∆angle of -10.2°. Consequently, the 65D
memory foam is considered to be the better choice in terms
of foam density.

The geometrical design parameters were optimized using
65D memory foam. Tests compared 262mm and 294mm
values for Li (equivalent to 28mm and 60mm Lic), 5mm
and 30mm values for Lgap. It was observed that the designs
with 5mm gaps exhibited excellent performance in terms of
Tstable and Tsettling compared to the 30mm one. However,
the 294mm design with 5mm gaps showed a relatively large
∆angle of -8.4°, and the difference in apeak between the
262mm design with 30mm and 5mm gaps was not substantial.

Overall, the configuration with 262mm Li and 5mm Lgap

yielded the relatively best performance among the tested de-
signs. Therefore, the 262mm Li and 5mm Lgap 65D memory
foam was chosen for further research, and the modeling of the
Fe-Arm was implemented based on this configuration.

D. Sensing and Motion Control
The end position of the Fe-Arm is measured using the

Orbbec Astra Mini monocular RGB depth camera, as shown
in Fig. 4(a). This process involves identifying the blue sticker
on the end plate and extracting the center point’s coordinates
from the point cloud data. The pneumatic actuation module
consists of the micro-controller unit (MCU), solenoid valves,
pressure sensors, and other parts, as shown in Fig. 4(b).
Fig. 4(c) compares forward direction actuation pressure with
and without enhancement of foam, and shows that impact
of the foam on the driving power can be disregarded. The
STM32F103C8T6 is used as the MCU to control the whole
system. The air pressure sensors are connected in series with
the output air circuit to measure the three actuation pressures
of the Fe-Arm respectively.

Using pneumatic control without any feedback, the Fe-
Arm is capable of executing simple movements within its
workspace with manual control inputs. The trajectories of
the Fe-Arm in the vertical, side, and forward three DOFs,
along with the corresponding actuation pressure values, are
depicted in Fig. 4(d)(e), respectively. Specifically, the Fe-Arm
can achieve a lateral 90° bend, a longitudinal contraction of
125mm, and an extension of 15mm relative to its initial length,
as demonstrated in Fig. 4(f). The maximum horizontal radius
of motion is 160mm, as shown in Fig. 4(d).
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Fig. 4. (a) End position detection module. (b) Pressure measurement and control module. (c) Forward direction actuation pressure with and without enhancement
of foam shows that embedded foam will not significantly increase the burden of the actuation system. (d) Motion trajectories of three DOFs. (e) Actuation
pressure values of motion in three DOFs. (f) Mechanical performance demonstration of the Fe-Arm. Blue indicates deflate, red indicates inflate, and white
indicates atmospheric pressure. Color shades correspond to bellows’ internal pressure level.

III. ITERATIVE SELF-IMPROVING LEARNING FOR
END-TO-END INVERSE KINEMATIC MODELING

A. Modeling Method Architecture

Due to the foam-embedded structure of the Fe-Arm, the
material property of memory foam has the capacity to store
motion potential energy and subsequently release it slowly.
As a result, the present state of the Fe-Arm is notably
influenced by its preceding state during continuous movement.
This dynamic gives rise to an intractable scenario where a
specific set of pressure values within the actuation space may
correspond to multiple distinct end positions in the task space,
depending on the entire trajectory the arm traveled from.

To effectively capture and respond to the intricate relation-
ship between the sequence of antecedent states and the current
state of the Fe-Arm, we employ RNNs for data-driven end-
to-end inverse kinematic modeling. Specifically, we utilize the
LSTM model [24] to address this particular challenge. The
inputs and outputs are illustrated below:

p(k) = f−1(p(0), p(1), ..., p(k − 1), t(k)), (1)

where the input pressure values of the actuators at the moment
k are represented by p(k), denoting the actuation space; the
corresponding target space end position of the Fe-Arm is
denoted by t(k). Specifically, we fix p(0) and t(0) to guarantee
the repeatability of the trained model.

To address the demand for high-quality training data, we
propose an iterative self-improving learning (ISL) strategy
designed to model for a specific target trajectory using a
limited dataset. The agent starts with a limited amount of
labeled data. Then the agent uses the available labeled data
to make predictions, which are then applied to the Fe-Arm.

This results in obtaining real actuation pressure and end po-
sition data. However, due to the scarcity of high-quality data,
the actual motion trajectories exhibit significant deviations
from the target trajectories. These real motion data are then
reintroduced into the training set for continuous iteration.
Through iterative training on this combined set of labeled and
low-quality data, the proposed learning strategy effectively
generates more training samples and improves the model’s
performance with minimal human intervention. The overall
modeling method procedure is illustrated in Fig. 5, with the red
section depicting the process of the ISL. The four trajectory
plots correspond to the tracking results of the quadrilateral-
shaped trajectory in four iterative trainings, respectively.

B. Data Acquisition
Due to the symmetry of the Fe-Arm structure, our investi-

gation is focused on the forward 120° workspace, as shown by
the light green region in Fig. 6(a), for the sake of simplicity.
The modeling method can be extended to the entire workspace.

As an initial model needs to be obtained before the self-
improving iterations, we also collect a simple initial training
set. The initial training set contains four sets of the simplest
and easiest to control trajectories, which are the forward, both
sides of the 60° vertical plane, and the vertical direction.
Each set of data is a downward motion from the original
vertical state and then returns upward, as shown in Fig. 6(a).
The Fe-Arm was first fixed at the original vertical position
using external support structures to ensure consistency for
each experiment. Then remove the supports and start actuating.
Each completed actuation immediately reads the three pressure
values at that time. After waiting for several seconds, the Fe-
Arm reaches quasi-static, and the camera takes a photo and
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Fig. 5. Schematic diagram of the LSTM-based iterative self-improving learning method (ISL) for end-to-end inverse kinematic modeling.

Fig. 6. (a) Initial training set and focused workspace. (b) The effects of different delay times on modeling. (c) The effects of different step sizes on modeling.
(d) The effects of different epochs on modeling.

measures the coordinates of the end position at this point. The
complete data set contains the three actuation pressures and the
3D position coordinates of all data points. All data acquisition
and testing are performed according to this process.

C. Control Parameters Optimization

Two parameters that influence the inverse kinematics mod-
eling during the control process are (a). the time delay required
to attain quasi-stasis after each step (Tdelay) and (b). the
distance between each incremental movement step (Lstep).
Considering the Fe-Arm need to ensure quasi-static conditions
during inverse kinematics modeling, the memory foam’s slow
rebound property requires a delay time after each actuation. A
brief delay can prevent the Fe-Arm from reaching quasi-static,
while a prolonged delay could disrupt motion continuity. A
larger step size results in a smaller sampling frequency, while a
smaller step size can introduce higher randomness fluctuations
due to systematic errors. Therefore, finding the right balance
between these two parameters is crucial to achieving accurate
and stable inverse kinematics modeling while ensuring smooth
and continuous robot motion.

We conducted two rounds of iterations using the same
target trajectory (lower quadrilateral, as shown in Fig. 7(a)),
comparing the effects of different delay times (0s, 1s, 2s)
and step sizes (5mm, 7mm, 9mm) on modeling accuracy. The
results are depicted in Fig. 6(b)(c). Notably, optimal modeling
performance was consistently achieved with the middle values
of Tdelay and Lstep, specifically 1s delay and 7mm per

step. These values yielded the least error across multiple
rounds. In round 2, errors reached a minimum of 18.00mm
and 21.45mm, respectively. The corresponding percentage
errors relative to the maximum horizontal radius of motion
are 11.25% and 13.4%. Both parameter values demonstrated
improvement trends during iterations. As a result, these two
values are chosen as the control parameters for subsequent
modeling tasks. The anomalies observed in the case of a 0s
delay situation can be attributed to the inherent instability
and oscillations. Inadequate time for the Fe-Arm to reach a
quasi-static state, led to increased random errors, resulting in
modeling errors that did not consistently decrease, along with
the occurrence of unusual volatility.

D. Neural Network Design and Training

PyTorch is used for building models, training, and inference.
The specific LSTM-based model architecture we use is shown
in Fig.5. The network commences with a sequential input
layer, incorporating three dimensions (3D) of end position
coordinates, relative to the coordinate system anchored at the
base of the Fe-Arm. It is followed by two LSTM hidden layers,
each comprising 32 hidden neurons. To prevent overfitting
and to make the prediction and modeling more robust to
noise, a dropout layer is added after the LSTM layer, with
a dropout rate of 0.2. This is followed by a fully connected
linear mapping layer of the same size for mapping the po-
sition to the pressure. Finally, the output layer produces the
three internal actuation pressure values. The training process
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Fig. 7. Modeling results of trajectories after three round iterations. The left side of the dotted line is the training trajectory and the right side is the validation
pentagonal trajectory. (a) The 3D position comparison between the target trajectories and the real trajectories. (b) Photos of motion trajectories shot by RGBD
camera.

Fig. 8. RMSEs of real trajectories vs. target trajectories for (a) 65D memory
Fe-Arm and (b) 50D memory Fe-Arm.

utilizes the adaptive moment estimation (Adam) algorithm to
expedite convergence and efficacy. The mean squared error
loss function (RMSE) is used as the loss function.

To determine the value of the training epoch of the model,
we also conducted two rounds of iterations to compare the
performance of models trained with three different numbers of
epochs. The results are depicted in Fig. 6(d), indicating that
100 epochs resulted in lower modeling accuracy. Conversely,
employing 300 epochs led to overfitting, as the errors did
not exhibit a decreasing trend. Thus, we determined that the
optimal number of training epochs for our model is 200.

E. Modeling Results

We designed four different movement trajectories for train-
ing, consisting of two different sizes of quadrilaterals and
triangles, as shown in Fig. 7. We employed the ISL strategy
outlined above to train a unified model using data collected
from all four trajectories, in both clockwise and counter-
clockwise directions. Fig. 7(a) and (b) illustrate the trajectory
outcomes in 3D space and through real images, after three
rounds of self-improving iterations, respectively. The RMSEs
of the real trajectories controlled with predicted pressure

compared to the target trajectories are presented in Fig. 8(a).
Additionally, the corresponding percentage errors relative to
the maximum horizontal radius of motion are summarized
in TABLE II. Across three round iterations, the RMSEs
for all four motion trajectories remained below 15mm, with
relative errors consistently within 9%. Notably, the smallest
modeling error after three iterations was observed in the lower
quadrilateral, measuring 11.53mm and 7.20%. Furthermore,
to validate whether the result was prone to overfitting on
training trajectories, we introduced an additional pentagon
validation trajectory that was not included in any training or
learning process. After only two iteration rounds, the pentagon
test trajectory exhibited the smallest error, with an RMSE of
10.68mm and a relative error of 6.67%. The result remained
almost consistent after three rounds. This outcome underscores
the robustness of the ISL method on different trajectories.

TABLE II
THE RELATIVE ERRORS OF TRAJECTORIES W.R.T. THE MAXIMUM

HORIZONTAL RADIUS OF MOTION

Trajectories Round 0 Round 1 Round 2 Round 3
Lower Quadrilateral 17.17% 17.08% 11.37% 7.20%
Middle Quadrilateral 14.86% 12.50% 7.69% 8.78%

Lower Triangle 19.89% 15.91% 15.49% 8.42%
Middle Triangle 12.40% 11.04% 11.79% 7.52%

Pentagon 25.26% 10.42% 6.67% 6.78%

The proposed ISL strategy for end-to-end inverse kinematics
modeling of the Fe-Arm enhances prediction accuracy as
iterations progress. Particularly noteworthy is the observed
reduction of the quadrilateral middle error to 12.31mm in the
second iteration, which implies that modeling errors tend to
stabilize and converge with an increase in iterations due to
control and system factors. The actual control mean absolute
deviation (MAD) of the pressure feedback control process for
the target actuation pressure per way is 0.33 kPa. Due to
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this system control error, the true accuracy of this modeling
technique is anticipated to surpass the reported outcomes.

Furthermore, to show the adaptability of the proposed ISL
method, we used the predicted pressure control sets obtained
from round three and applied them to the Fe-Arm featuring
262mm Li and 5mm Lgap with 50D memory foam. Subse-
quently, we utilized the newly acquired real-world data from
the execution of quadrilateral and triangle trajectories as our
training set to continually iterate and construct a new model for
the 50D memory Fe-Arm. Despite the suboptimal foam ma-
terial and the limited data, the modeling results demonstrated
a decrease in error, with RMSEs of 17.47mm and 15.26mm
for quadrilateral and triangle trajectories, as shown in Fig.
8(b). In summary, the collective findings illustrate that this
ISL modeling approach attains superior accuracy even with a
limited number of iterations and a constrained dataset of high
quality. The performance also underscores the methodology’s
portability and adaptability across various configurations.

IV. CONCLUSION

This paper focused on the issues of soft robot arm os-
cillation and instability during control. Leveraging memory
foam’s unique viscoelastic and low-resilience characteristics,
we have successfully engineered a Fe-Joint design that reduces
oscillations during motion. This design has been incorporated
into the Fe-Arm with an iterative optimization process refining
design configurations. The resultant mechanical performance
of the Fe-Arm showcases exceptional control potential across
stability and an expansive workspace while retaining its inher-
ent flexibility and compliance.

With the appropriate foam components, the movements
of the Fe-Arm can be considered quasi-static and are able
to be controlled by inverse kinematic modeling. An LSTM-
based iterative self-improving end-to-end inverse kinematics
modeling method is hence proposed, specifically tailored to
the Fe-Arm’s mechanical intricacies. Through the optimization
of control parameters, the methodology achieved trajectory
modeling errors consistently less than 16mm and a mere 10%
with respect to the workspace radius. The best modeling result,
after three rounds of iterations, reached an error of 12.26mm
and 7.67%. These results were achieved while working with
restricted datasets, iteration cycles, and limited human inter-
vention. Furthermore, our proposed learning strategy enhanced
model prediction accuracy through the iterative process, ex-
emplifying its efficacy in ensuring precise trajectory tracking
under open-loop control paradigms. Finally, we demonstrated
the generalization potential of the ISL method using a pentag-
onal trajectory and on a Fe-Arm configuration with different
foam components.

In future work, it is worth exploring the optimal configura-
tion of foam structure through the dynamic model of the arm
as a mass-spring-damper system for enhancing performance.
Also, to further validate the proposed ISL method, it is also
worthwhile to apply it to other soft arm structures.
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